In Silico Design and Biological Evaluation of a Dual Specificity Kinase Inhibitor Targeting Cell Cycle Progression and Angiogenesis
نویسندگان
چکیده
BACKGROUND Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues. METHODOLOGY We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis. CONCLUSIONS We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.
منابع مشابه
Design, Synthesis and Biological Evaluation of Ketoprofen Conjugated To RGD/NGR for Targeted Cancer Therapy
It is well known that Arginine-Glycine-Aspartic acid (RGD) and Asparagine-Glycine-Arginine (NGR) peptides preferentially bind to integrin receptors and aminopeptidase Nrespectively and these two receptors play important roles in angiogenesis. Therefore ketoprofenas a non-selective cox Inhibitor was conjugated with linear RGD and NGR to take advantageof targeting capability of these two motifs a...
متن کاملDesign, Synthesis and Biological Evaluation of Ketoprofen Conjugated To RGD/NGR for Targeted Cancer Therapy
It is well known that Arginine-Glycine-Aspartic acid (RGD) and Asparagine-Glycine-Arginine (NGR) peptides preferentially bind to integrin receptors and aminopeptidase Nrespectively and these two receptors play important roles in angiogenesis. Therefore ketoprofenas a non-selective cox Inhibitor was conjugated with linear RGD and NGR to take advantageof targeting capability of these two motifs a...
متن کاملImpact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo)
Background and Objective: The cell division cycle 25 (CDC25)is a familyof highly conserved dual-specificity phosphatases that activate cyclin-dependent kinase complexes. These complexes are the main cell cycle regulators. Mammalian cells ,exposure to DNA damaging radiations such as ionizing radiation and ultraviolet light, prevent cell cycle progression by activation of checkpoint pathways an...
متن کاملDesign of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function
Objective(s): Nanobodies, the single domain antigen binding fragments of heavy chain-only antibodies occurring naturally in camelid sera, are the smallest intact antigen binding entities. Their minimal size assists in reaching otherwise largely inaccessible regions of antigens. However, their camelid origin raises a possible concern of immunogenicity when used for human therapy. Humanization is...
متن کاملInhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519
An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...
متن کامل